(14.82 %, 12.16 %, 26.55 %, or 23.69 %)-Limiting Highest Efficiencies, obtained respectively in \mathbf{n}^+(\mathbf{p}^+)-\mathbf{p}(\mathbf{n})\ Crystalline (\mathbf{X}\equivGe, GaSb, CdTe, or CdSe)-Junction Solar Cells, Due to the Effects of Impurity Size, Temperature, Heavy Doping, and Photovoltaic Conversion

Volume 8, Issue 6, December 2023     |     PP. 575-595      |     PDF (1349 K)    |     Pub. Date: November 21, 2023
DOI: 10.54647/physics140591    46 Downloads     206337 Views  

Author(s)

H. Van Cong, Université de Perpignan Via Domitia, Laboratoire de Mathématiques et Physique (LAMPS), EA 4217, Département de Physique, 52, Avenue Paul Alduy, F-66 860 Perpignan, France.

Abstract
In the n^+(p^+)-p(n) crystalline (X\equivGe, GaSb, CdTe or CdSe)-junction solar cells at 300K, due to the effects of impurity size, temperature, heavy doping, and photovoltaic conversion, we show that, with an increasing donor (acceptor)-radius r_{d\left(a\right)}, both the relative dielectric constant and photovoltaic conversion factor decrease, and the intrinsic band gap (IBG) increases, according to the increase in photovoltaic efficiency, as observed in Tables 1-5, being in good accordance with an important result obtained by Shockley and Queisser [10], stating that for an increasing IBG the photovoltaic efficiency increases. Further, for highest values of r_{d\left(a\right)}, the limiting highest efficiencies are found to be given in Tables 2.2, 3.2, 4.2, and 5.2, as: 14.82 %, 12.16 %, 26.55 %, and 23.69 %,), obtained in such n^+(p^+)-p(n) crystalline (Ge, GaSb, CdTe, or CdSe)-junction solar cells at the open circuit voltage {\ V}_{oc}=0.33 V, 0.355 V, 0.82 V, and 0.89 V, respectively, and at T=300 K. Furthermore, from the well-known Carnot-efficiency theorem, as given in Eq. (46), being obtained from the second principle of the thermodynamics, and from the above results of limiting highest efficiencies, the corresponding highest hot reservoir temperatures, T_H=352.2 K, 341.5 K, 408.4 K, and 393.1 K, respectively. Thus, as noted above, \eta_{max.} and T_H both increase with an increasing IBG, for each (X\equivGe, GaSb, CdTe, or CdSe)- crystal at T=300 K\equivT_C.

Keywords
donor (acceptor)-size effect; heavily doped emitter region; photovoltaic conversion factor; open circuit voltage; efficiency

Cite this paper
H. Van Cong, (14.82 %, 12.16 %, 26.55 %, or 23.69 %)-Limiting Highest Efficiencies, obtained respectively in \mathbf{n}^+(\mathbf{p}^+)-\mathbf{p}(\mathbf{n})\ Crystalline (\mathbf{X}\equivGe, GaSb, CdTe, or CdSe)-Junction Solar Cells, Due to the Effects of Impurity Size, Temperature, Heavy Doping, and Photovoltaic Conversion , SCIREA Journal of Physics. Volume 8, Issue 6, December 2023 | PP. 575-595. 10.54647/physics140591

References

[ 1 ] H. Van Cong, K.C. Ho-Huynh Thi, C.T. Huynh-Pivet, A. Pivet& P. Damien, “ 30.76% (42.73%)- New Limiting Highest Efficiencies obtained in Crystalline GaAs Junction Solar Cells at 300K, Due to the Effects of Heavy (Low) Doping and Impurity Size,” SCIREA J. Phys., Vol. 7, 180-199, 2022.
[ 2 ] M.A.Green, E.D. Dunlop, J. Hohl-Ebinger, M. Yoshita, N. Kopidakis & X. Hao, ”Solar cell efficiency tables (version 59), ” Prog. Photovolt. Res. & Appl., vol. 30, 3-12, 2022 ; A. Rohatgi, H.C. Chou, S. Kamra & A. Bhat, “Development of high-efficiency, thin-film CdTe solar cells, “NREL/TP-451-7065.UC Category: 1263.DE94011885.  
[ 3 ] P. Singh & N.M. Ravindra, “Temperature dependence of solar cell performance-an analysis,” Solar Energ. Mater. Solar Cells, vol. 101, 36-45, 2012.
[ 4 ] Green, M. A., ”Solar cell fill factors: general graph and empirical expressions., ” Solid-State Electron, vol. 24, 788-789, 1981.
[ 5 ] B. Hekmatshoar, D. Shahrjerdi, M. Hopstaken, K. Fogel & D. K. Sadana, “ High-efficiency heterojunction solar cells on crystalline germanium substrates, Appl. Phys. Lett., vol. 101, 032102, 2012.
[ 6 ] F.Z. Kharchich & A. Khamlichi,”Simulation aided design of a high efficient GaSb based single-junction solar cell, ”International Review of Applied Sciences and engineering, vol. 14, 201-2011, 2023.
[ 7 ] L.M. Pérez, A. EL Aouami, K. Feddl, V. Tasco, A.B. et al., “Parametrs optimization of intermediate band solar cells: cases of PbTe/CdTe, PbSe/ZnTe and InN/GaN quantum dots, Crystals, vol. 12, 1002, 2022 ; A.J. Strauss, “The physical properties of cadmium telluride,” Revue de Physique Appliquée, vol. 12, 167-184, 1977.
[ 8 ] C. Kittel,”Introduction to Solid State Physics, ” Wiley, New York, 84-100, 1976.
[ 9 ] S. Parola, A. Vauthelin, J. Tournet, J. Kret, J. El Husseir, F. Martinez & Y. Cuminal, ”Improved efficiency of GaSb solar cell using an window layer, ” Solar Energ. Mater. Solar Cells, vol. 200, 110042, 2019; O.M.T. Kate, M.D. Jong, H.T. Hintzen & E. van der Kolk, ”Efficiency enhancement calculations of states-of-the-art solar cells by luminescent layers with spectral shifting, quantum cutting, and quantum tripling function, ” J. Appl. Phys., vol. 114, 084502, 2013.
[ 10 ] W. Shockley, W. & H.J. Queisser, H. J. (1961), ”Detailed balance limit of efficiency of p-n junction solar cells, ” J. Appl. Phys., vol. 32, 510-519, 1961.
[ 11 ] H. Van Cong, H. (2022), ”New dielectric constant, due to the impurity size effect, and determined by an effective Bohr model, affecting strongly the Mott criterion in the metal-insulator transition and the optical band gap in degenerate (Si, GaAs, InP)-semiconductors, ” SCIREA J. Phys., vol. 7, 221-234, 2022.
[ 12 ] H.Van Cong,”Effects of impurity size and heavy doping on energy-band-structure parameters of various impurity-Si systems, ” Physica B, vol. 487, 90-101, 2016.
[ 13 ] H. Van Cong, ”A new solution for minority-carrier injection into the heavily doped emitter of silicon devices, ” Physica Status Solidi A, vol. 171, 631-64, 1999.
[ 14 ] H. Van Cong & G. Debiais,”Energy band structure parameters and their data, derived from the measurements of minority carrier current density in heavily doped emitters of silicon devices, ” Solar Ener. Mater. and Solar Cells, vol. 45, 385-399, 1997.
[ 15 ] H. Van Cong & G. Debiais, , ”Apparent band-gap narrowing and its data derived from the measurements of minority-carrier current density in heavily doped emitters of silicon devices, ” Physica Status Solidi A, vol. 155, 547-553, 1996.
[ 16 ] H. Van Cong, ”A simple accurate solution to minority electron injection in the p-type heavily doped emitter region of silicon devices, ” Physica Status Solidi A, vol. 149, 619-628, 1995.
[ 17 ] H. Van Cong & G. Debiais, ”A simple accurate expression of the reduced Fermi energy for any reduced carrier density, ” J. Appl. Phys., vol. 73, 1545-1546, 1993.
[ 18 ] H. Van Cong & B. Doan Khanh, ”Simple accurate general expression of the Fermi-Dirac integral and for j> -1, ” Solid-State Electron., vol. 35, 949-951, 1992.
[ 19 ] H. Van Cong, ”New series representation of Fermi-Dirac integral for arbitrary j> -1, and its effect on for integer j, ” Solid-State Electron., vol. 34, 489-492, 1991.
[ 20 ] H. Van Cong, S. Brunet & J.C. Martin, ”Size effect on different impurity levels in semiconductors, ” Solid State Communications, vol. 49, 697-699, 1984.
[ 21 ] H. Van Cong, ”Fermi energy and band-tail parameters in heavily doped semiconductors, ” J. Phys. Chem. Solids, vol. 36, 1237-1240, 1975.