147 Downloads 267 Views
Author(s)
Yu. N. Zayko, Russian Presidential Academy of National Economy and Public Administration, Stolypin Volga Region Institute, Russia, 410031, Saratov, Sobornaya st, 23/25, Russia.
Abstract
This article is devoted to the problem of light propagation in a spacetime which curvature is due not to massive sources but to the electromagnetic field of the wave itself. Some methodological questions are discussed, such as an isotropy of metric, implementation of the KalutzaKlein model, topology of spacetime, etc
Keywords
spherical electromagnetic wave, MaxwellEinstein equations, metric tensor, topology of spacetime.
Cite this paper
Yu. N. Zayko,
Influence of SpaceTime Curvature on the Light Propagation, SCIREA Journal of Physics. Vol.
1
, No.
1
,
2016
, pp.
83

93
.
References
[ 1 ]  Zayko Y.N. Explicit Solution of EinsteinMaxwell Equations. 8. International Journal of Theoretical and Mathematical Physics – IJTMP, 2011, V. 1, № 1, pp. 12  16. 
[ 2 ]  Zayko Y.N. Completeness’ Problem of Being Transmitted Information. Proc. of the Saratov Nat. Res. State Univ., Ser. Physics, 2013, Т. 13. №. 2 pp. 5058. (Russian) 
[ 3 ]  Zayko Y.N. Nonwave Solutions of the MaxwellEinstein Equations. Physical Science International Journal, 2014, №4(9), pp. 12801292 
[ 4 ]  Zayko Y.N. Topology of Real Space. Eurasian Union of Scientists, Proc. of the Int. SciPract. Conf . “Modern Concepts of Science Researches”,P.2, № 4, pp. 165168, Мoscow. 25.06.2014.(Russian) 
[ 5 ]  Zayko Y.N. Electromagnetic Fields of Eigenmodes in Spherical Resonators. Physical Science International Journal, 2015, №5(1), pp.1825. 
[ 6 ]  Zayko Y.N. Synchronization of Sources of Radiation with the Help of Tunneling. Physical Science International Journal, 2014, 4(7), pp.954961. 
[ 7 ]  Landau L.D., Lifshitz E.M. (1975). The Classical Theory of Fields. Vol. 2 (4th ed.). ButterworthHeinemann 
[ 8 ]  Baz' A. I., Zel'dovich Ya. B., and Perelomov A. M., Scattering, Reactions and Decays in Nonrelativistic Quantum Mechanics, 1st ed.; Israel Program for Scientific Translations, Jerusalem, 1966. 
[ 9 ]  Zayko Y.N. Dynamics and Synchronization of Dual Phase. 10. International Journal of Theoretical and Mathematical Physics – IJTMP, 2012, V. 2, № 4, pp. 7983 
[ 10 ]  Nicolis J.S. Dynamics of Hierarchical Systems. An Evolutionary Approach.SpringerVerlag.1986. 
[ 11 ]  Kaluza Th., Sitzungsber. d. Berl. Akad., 1921, S. 966. 
[ 12 ]  Chоdоs A. Kaluza — Klein Theories: Overview.— Comm. Nucl. and Part.Phys. (Comm. Mod. Phys. Pt. A), 1984, v. 13, No. . 171—181. 
[ 13 ]  Perelman, Grisha (Nov. 11, 2002), "The entropy formula for the Ricci flow and its geometric applications", arΧiv:math.DG/0211159 [math.DG]; (Mar. 10, 2003), "Ricci flow with surgery on threemanifolds", arΧiv:math.DG/0303109 [math.DG]; 
[ 14 ]  Sadownitchiy V.V. ACADEMIA. From Hypotheses and Mistakes to Science Truth. Mathematician Watch, Lecture 2, http:// http://tvkultura.ru/video /show/ brand_id/20898/episode_id/975155 
[ 15 ]  Berestetskii V.B., Lifshitz E.M., Pitaevskii L.P. (1982). Quantum Electrodynamics. Vol. 4 (2nd ed.). ButterworthHeinemann. 
[ 16 ]  Hawking S.W. Gravitational Instantons. Phys. Lett., A60 (1977), p. 81. 
[ 17 ]  Cornell University Library: http://arxiv.org. 
[ 18 ]  Hawking S.W. Ellis G.F.R., The Large Scale Structure of SpaceTime. Cambridge Univ. Press, 1973. 
[ 19 ]  Bronnikov K.A., Rubin S.G. Lectures on gravitation and cosmology. Moscow, MIFI, 2008. 
[ 20 ]  Zayko Y.N. The ponderomotive force acting from the electromagnetic wave onto the probe particle, 2016, in print. 