MXene-based material optimized shielding effectiveness of chassis

Volume 8, Issue 2, April 2023     |     PP. 158-171      |     PDF (1975 K)    |     Pub. Date: April 17, 2023
DOI: 10.54647/physics140541    85 Downloads     1921 Views  


Ke Meng, Institute of Electromagnetic Compatibility, Guangzhou GRG Metrology & Test Co., Ltd, Guangzhou, China
Enbo Liu, Institute of Electromagnetic Compatibility, Guangzhou GRG Metrology & Test Co., Ltd, Guangzhou, China

The electronic equipment needs a special circuit design during working in complex electromagnetic environmental. Human-made or natural electromagnetic interference has a large effect on electronics. Both the couple of signal cable and the bit error rate during high-speed communication affects the reliability of equipment. Thus, electronic equipment with these problems is bad for the process of industrial production. Electromagnetic shielding is a good method to improve the radiated susceptibility of electronic equipment. The material of the chassis, the structure of chassis, and the thickness of the chassis wall affect the shielding effectiveness of chassis. Thus, in order to investigate the effect of microwave absorption material on the shielding effectiveness of chassis. This article is based on the material of the chassis, combing the simulation of High Frequency Structure Simulation (HFSS) software, to study the effect of MXene-based microwave absorption material on the shielding effectiveness. The simulation results indicate that chassis optimized by MXene-based materials has a better shielding effectiveness. When the thickness of the microwave absorption material is 0.6 mm, it shows a good shielding effectiveness.

Shielding Effectiveness, MXene, HFSS, Microwave absorption material

Cite this paper
Ke Meng, Enbo Liu, MXene-based material optimized shielding effectiveness of chassis , SCIREA Journal of Physics. Volume 8, Issue 2, April 2023 | PP. 158-171. 10.54647/physics140541


[ 1 ] Wang, Z., Cheng, Z., Fang, C. Q., Hou, X. L., Xie, L., “Recent advances in MXenes composites for electromagnetic interference shielding and microwave absorption,” Composites, Part A, 136. 105956. Sept.2020.
[ 2 ] Liang, L. Y., Yang, R. S., Han, G. J., Feng, Y. Z., Zhao, B., Zhang, R., Wang, Y. M., Liu, C. T., “Enhanced Electromagnetic Wave-Absorbing Performance of Magnetic Nanoparticles-Anchored 2D Ti3C2Tx MXene, ” ACS Appl. Mater. Interfaces, 12(2). 2644-2654. Dec.2020.
[ 3 ] Cao, M. S., Wang, X. X., Zhang, M., Shu, J. C., Cao, W. Q., Yang, H. J., Fang, X. Y., Yuan, J., “Electromagnetic Response and Energy Conversion for Functions and Devices in Low-Dimensional Materials,” Adv. Funct. Mater., 29(25). 1807398. Jun.(2019).
[ 4 ] Xu, H. L., Yin, X. W., Li, X. L., Li, M. H., Liang, S., Zhang, L. T., Cheng, L. F., “Lightweight Ti2CTx MXene/Poly(vinyl alcohol) Composites Foams for Electromagnetic Wave Shielding with Absorption-Dominated Feature,” ACS Appl. Mater. Interfaces, 11(10). 10198-10207. Jan.2019.
[ 5 ] Alam, S. M. J., Alam, M. R., Hu, G. Q., Mehrab, M. Z., “Bit Error Rate Optimization in Fiber Optic Communications,” Int. J. Mach. Learn. Comput., 1(5). 435-440. Dec.2011.
[ 6 ] Aldossari, S. M., Chen, K. C., “Machine Learning for Wireless Communication Channel Modeling: An Overview,” Wireless Pers Commun, 106. 41-70.Mar.2019.
[ 7 ] Hunt, B. J., “Oliver Heaviside: A first-rate oddity,” Phys. Today 64(11). 48-53. Nov.2012.
[ 8 ] Wu, J. H., Scholvin, J., del Alamo, J. A., Jenkins, K. A., “A faraday cage isolation structure for substrate crosstalk suppression,” IEEE Micro Wire CO., 11(10). Oct.410-412.2001.
[ 9 ] H. B. Liu, R. L. Fu, X. Q. Su, X. D. Chen, B. Y. Wu, Mxene Structure, Properties and Application in the Filed of Electromagnetic Shielding, Mater. Rep. 35, 13067-13074(2021).
[ 10 ] Chung, D. D. L., “Materials for electromagnetic interference shielding,” Mater. Chem. Phys,. 255, 123587. Nov.2020.
[ 11 ] Dai, B., Ma, Y., Dong, F., Yu, J., Ma, M. L., Thabet, H. K., El-Bahy, S. M., lbrahim, M. M., Huang, M., Seok, l., Roymahapatra, G., Naik, N., Xu, B. B., Ding, J. X., Li, T. X., “Overview of MXene and conducting polymer matrix composites for electromagnetic wave absorption,” Adv. Compos. Hybrid Mater., 5. 704-754. Jul.2022.
[ 12 ] Naguib, M., Kurtoglu, M., Presser, V., Lu, J., Niu, J. J., Heon, M., Hultman, L., Gogotsi, Y., Barsoum, M. W., “Two-Dimensional Nanocrystals Produced by Exfoliation of Ti3AlC2,” Adv. Mater., 23(37). 4248-4253. Oct.2011.
[ 13 ] Deng, Q. H., Feng, Y. F., Li, W., Xu, X. Q., Peng, C., Wu, Q., “Strong interface effect induced high-k property in polymer based ternary composites filled with 2D layered Ti3C2 MXene nanosheets,” J. Mater: Mater in Electron, 30. 9106-9113.Mar.2019.
[ 14 ] Shuck, C. E., Sarycheva, A., Anayee, M., Levitt, A., Zhu, Y. Z., Uzun, S., Balitskiy, V., Zahorodna, V., Gogotsi, O., Gotosi, Y., “Scalable Synthesis of Ti3C2Tx MXene,” Adv. Eng. Mater., 22(3). 1901241. Mar.2020.
[ 15 ] Kim, H., Alshareef, H. N., “MXetronics: MXene-Enabled Electronic and Photonic Devices,” ACS Mater. Lett., 2(1). 55-70. Nov.2020.
[ 16 ] Ma, C., Ma, M. G., Si, C. L., Ji, X. X., Wan, P. B., “Flexible MXene-Based Composites for wearable Devices,” Adv. Funct. Mater. 31(22). 2009524.May.2021.
[ 17 ] Rasool, K., Helal, M., Ali, A., Ren, C. E., Gotosi, Y., Mahmoud, K. A., “Antibacterial Activity of Ti3C2Tx MXene,” ACS Nano, 10(3). 3674-3684.Feb.2016.
[ 18 ] Kuang, P. Y., Low, J. X., Cheng, B., Yu, J. G., Fan, J. J., “MXene-based photocatalysts,” J. Mater. Sci. Technol., 56. 18-44.Nov.2020.
[ 19 ] Hu, M. M., Zhang, H., Hu, T., Fan, B. B., Wang, X. H., Li, Z. J., “Emerging 2D MXenes for supercapacitors: status, challenges and prospects,” Chem. Soc. Rev., 49(18). 6666-6693.Aug.2020.
[ 20 ] Leong, C. C., Qu, Y. J., Kawazone, Y., Ho, S. K., Pan, H., “MXenes: Novel electrocatalysts for hydrogen production and nitrogen reduction,” Catal. Today, 370. 2-13.Jun.2021.
[ 21 ] Mirkhani, S. A., Zeraati, A. S., Aliabadian, E., Naguib, M., Sundararaj, U., “High dielectric constant and low dielectric loss via poly(vinylalcohol)/Ti3C2Tx MXene Nanocomposites,” ACS Appl. Mater. Interfaces, 11(2). 18599-18608.Nov.2019.
[ 22 ] Meng, K., Li, W. H., Tang, X. G., Liu, Q. X., Jiang, Y. P., “The defect related energy-storage properties of A-site off-stoichiometry ferroelectric ceramic,” Appl. Phys. A, 337. 127.Apr.2021.
[ 23 ] Wu, M., Rao, L., Zhang, J. F., Li, Y. X., Ji, Z. Y., Ying, G. B., “Research progress in preparation and performance of MXene and its composites absorbing materials,” J. Compos. Mater., 39(3). 942-955.Mar.2022.
[ 24 ] Zhang, Z. W., Cai, Z. H., Zhang, Y., Peng, Y. L., Wang, Z. Y., Xia, L., Ma, S. P., Yin, Z. Z., Wang, R. F., Cao, Y. S., Li, Z., Huang, Y., “The recent progress of MXene-Based microwave absorption materials,” Carbon, 174. 484-499.Apr.2021.
[ 25 ] Wang, T., Chen, G., Zhu, J. H., Gong, H., Zhang, L. M., Wu, H. J., “Deep understanding of impedance matching and quarter wavelength theory in electromagnetic wave absorption,” J. Colloid Interface Sci., 595. 1-5.Aug.2021.
[ 26 ] Liang, L. Y., Li, Q. M., Yan, X., Feng, Y. Z., Wang, Y. M., Zhang, H. B., Zhou, X. P., Liu, C. T., Shen, C. Y., Xie, X. L., “Multifunctional magnetic Ti3C2Tx MXene/Graphene aerogel with superior electromagnetic wave absorption performance,” ACS Nano, 15(4). 6622-6632.Mar. 2021.
[ 27 ] Wu, N. N., Xu, D. M., Wang, Z., Wang, F. L., Liu, J. R., Liu, W., Shao, Q., Liu, H., Gao, Q., Gao, Z. H., “Achieving superior electromagnetic wave absorbers through the novel metal-organic frameworks derived magnetic porous nanorods,” Carbon, 145. 433-444.Apr.2019.
[ 28 ] Liu, P. B., Zhang, Y. Q., Yan, J., Huang, Y., Xia, L., Guang, Z. X. “Synthesis of lightweight N-doped graphene foams with open reticular structure for high-efficiency electromagnetic wave absorption,” Chem. Eng. J., 368. 285-298.Jul.2019.
[ 29 ] Qiu, Y., Lin, Y., Yang, H.B., Wang, L., Wang, M. Q., Wen, B., “Hollow Ni/C microspheres derived from Ni-metal organic framework for electromagnetic wave absorption,” Chem. Eng. J., 383.123207.Mar.2020.
[ 30 ] Zeng, M., Cao, Q., Liu, J., Guo, B. Y., Hao, X. Z., Liu, Q. W., Sun, X., Zhang, X. X., Yu, R. H., “Hierarchical Cobalt Selenides as highly efficient microwave absorbers with tunable Frequency Response,” ACS Appl. Mater. Interfaces, 12(1).1222-1231.Dec.2020.
[ 31 ] Wang, C., Han, X. J., Xu, P., Zhang, X. L., Du, Y. C., Hu, S. R., Wang, J. Y., Wang, X. H., “The electromagnetic property of chemically reduced graphene oxide and its application as microwave absorbing material,” Appl. Phys. Lett., 98(7), 072906.Feb.2011.
[ 32 ] Cao, M. S., Yang, J., Song, W. L., Zhang, D. Q., Wen, B., Jin, H. B., Hou, Z. L., Yuan, J., “Ferroferric Oxide/Multiwalled Carbon Nanotube vs Polyaniline/Ferroferric Oxide/Multiwalled Carbon Nanotube Multiheterostructures for Highly Effective Microwave Absorption,” ACS Appl. Mater. Interfaces, 4(12). 6949-6956.Nov.2012.
[ 33 ] Marvin, A. C., Dawson, J. F., Ward, S., Dawson, L., Clegg, J., Weissenfeld, A., “A proposed new definition and measurement of the shielding effect of equipment enclosures,” IEEE Trans. Electromag. Compat., 46(3). 459-468.Aug.2004.
[ 34 ] Wheeler, H. A., “Formulas for the skin effect,” Proc. IRE, 30(9). 412-424.Sept.1942.