Effects of Heavy Doping and Impurity Size on MinorityCarrier Transport Parameters in Heavily (Lightly) Doped p^+ (n)Type Crystalline Silicon at 300 K, Applied to Determine the Performance of p^+n Junction Solar Cells
39 Downloads 11936 Views
Author(s)
H. Van Cong, Université de Perpignan Via Domitia, Laboratoire de Mathématiques et Physique (LAMPS), EA 4217, Département de Physique, 52, Avenue Paul Alduy, F66 860 Perpignan, France
P. Blaise, Université de Perpignan Via Domitia, Laboratoire de Mathématiques et Physique (LAMPS), EA 4217, Département de Physique, 52, Avenue Paul Alduy, F66 860 Perpignan, France
O. HenriRousseau, Université de Perpignan Via Domitia, Laboratoire de Mathématiques et Physique (LAMPS), EA 4217, Département de Physique, 52, Avenue Paul Alduy, F66 860 Perpignan, France
Abstract
The effects of heavy doping and acceptor (donor) size on the electron (hole)minority saturation current density J_Eo (J_Bo ), injected respectively into the heavily (lightly) doped crystalline silicon (Si) emitter (base) region of p^+n junction, which can be applied to determine the performance of solar cells, being strongly affected by the dark saturation current density: J_o≡J_Eo+J_Bo, were investigated. For that, we used an effective Gaussian acceptordensity profile to determine J_Eo, and an empirical method of two points to investigate the ideality factor n, short circuit current density J_sc, fill factor (FF), and photovoltaic conversion efficiency η, expressed as functions of the open circuit voltage V_oc, giving rise to a satisfactory description of our obtained results, being compared also with other existing theoreticalandexperimental ones. In particular, the highest ηvalue, obtained in the present paper is equal to: η(present)=27.56%, given in the condition of completely opaque and heavily doped (TlSi) emitterandlightly doped (SSi) base regions, with the intrinsic band gap, E_gi (r_Tl )=1.34 eV, where r_Tl is the Tlatom radius, while in our previous paper we got: η(previous)=31.55%, obtained in the condition of completely opaque and heavily doped (SSi) emitterandlightly doped (TlSi) base regions, with E_gi (r_S )=1.70 eV>E_gi (r_Tl )=1.34 eV, where r_S is the Satom radius. That is due to the impuritysize effect, because of r_S>r_Tl. Those results can be compared with a wellknown highest ηvalue, obtained by Richter et al. (R), η(R)=29.43%, as: η(present)=27.56%<η(R)=29.43%<η(previous)=31.55%.
Keywords
donor (acceptor)size effect; heavily doped emitter region; ideality factor; open circuit voltage; photovoltaic conversion efficiency
Cite this paper
H. Van Cong,
P. Blaise,
O. HenriRousseau,
Effects of Heavy Doping and Impurity Size on MinorityCarrier Transport Parameters in Heavily (Lightly) Doped p^+ (n)Type Crystalline Silicon at 300 K, Applied to Determine the Performance of p^+n Junction Solar Cells, SCIREA Journal of Physics. Vol.
4
, No.
5
,
2019
, pp.
126

162
.
References
[ 1 ]  H. Van Cong, P. Blaise, and O. HenriRousseau, “Effects of heavy doping and impurity size on minoritycarrier transport parameters in heavily (lightly) doped n(p)type crystalline silicon at 300 K, applied to determine the performance of junction solar cells,” to be published in SCIREA Journal of Physics. 
[ 2 ]  S. De Wolf, A. Descoeudres, Z. C. Holman, and C. Ballif, “Highefficiency silicon heterojunction solar cells: a review,” Green, vol. 2, pp. 724, 2012. 
[ 3 ]  W. Shockley, “The theory of pn junctions in semiconductors and pn junction transistors,” Bell Syst. Tech. J., vol. 28, pp. 435489, 1949; W. Shockley and H. J. Queisser, “ Detailed balance limit of efficiency of pn junction solar cells.” J. Appl. Phys., vol. 32, pp. 510519, 1961. 
[ 4 ]  J. W. Slotboom, H. C. de Graaff, “Measurements of band gap narrowing in Si bipolar transistors,” SolidState Electron., vol. 19, pp. 857862, 1976. 
[ 5 ]  M. A. Green, “Solar cell fill factors: general graph and empirical expressions,” SolidState Electron., vol. 24, pp. 788789, 1981; M. Leilaeioun and Z. C. Holman,”Accuracy of expressions for the fill factor of a solar cell in terms of opencircuit voltage and ideality factor,” J. Appl. Phys., vol. 120, pp. 123111, 2016. 
[ 6 ]  R. M. Swanson and R. A. Sinton,“ Advances in Solar Energy,” edited by K. A. Bouer , American Solar Energy, Newark, Delaware, 1990. 
[ 7 ]  H. P. D. Lanyon, “The Physics of heavily doped junction solar cells,” Solar Cells,” vol. 3, pp. 289311, 1981; H. Van Cong and S. Brunet, “Effective drift current densities in the ntype heavily doped emitter region of junction silicon solar cells, ”Solar Cells,” vol. 5, pp. 355365, 1982; H. Van Cong and S. Brunet, S. Charar, J. L. Birman, and M. Averous, “Optical and electrical energy gaps of the ntype impure silicon at 300 K,” Solid State Commun., vol. 45, pp. 611614, 1983. 
[ 8 ]  M. A. Shibib, F. A. Lindholm, and F. Therez, “Heavily doped transparentemitter region in junction solar cells, diodes, and transistors,” IEEE Trans. Electron Devices, vol. ED26, pp.959965, 1979; M. A. Shibib and J. G. Fossum, “Limitations on the opencircuit voltage imposed by and regions in silicon solar cells,” J. Appl. Phys., vol. 52, pp. 10721075, 1981. 
[ 9 ]  J. del Alamo and R. M. Swanson, “The physics and modeling of heavily doped emitters,” IEEE Trans. Electron Devices, vol. ED31, pp. 18781888, 1984; J. del Alamo, S. Swirhum, and R. M. Swanson,“Measurement of steadystate minoritycarrier transport parameters in heavily doped ntype silicon,” IEEE Trans. Electron Devices, vol. ED34, pp. 15801589, 1987. 
[ 10 ]  R. A. Logan, J. F. Gilbert, and F. A. Trumbore, “Electron mobilities and tunneling currents in silicon, ”J. Appl. Phys.,” vol. 32, pp. 131132, 1961. 
[ 11 ]  J. del Alamo, S. Swirhum, and R. M. Swanson, “Measuring and modeling minority carrier transport in heavily doped silicon, ”SolidState Electron.,” vol. 28, pp. 4754, 1985; J. del Alamo, S. Swirhum, and Swanson R. M., “Simultaneous measurement of hole lifetime, hole mobility, and band gap narrowing in heavily doped ntype silicon,” Int. Electron Devices Meet. Tech. Dig.,” vol. 31, pp. 290293, 1985. 
[ 12 ]  D. Chattopadhyay and H. J. Queisser, “Electron scattering by ionized impurities in semiconductors,” Rev. Mod. Phys., vol. 53, pp. 745768, 1981. 
[ 13 ]  R. M. Swanson, “Modeling of minoritycarrier transport in heavily doped silicon emitters, ”SolidState Electron.,” vol. 30, pp. 11271136, 1987. 
[ 14 ]  Z. Essa, N. Taleb, B. Sermage, C. Broussillon, B. BazerBachi, and M. Quillec, “Doping profile measurement on textured silicon surface,” EPJ Photovoltaics, vol. 9, p. 5, 2018. 
[ 15 ]  S. C. Jain, E. L. Heasell, and D. J. Roulston, “Recent advances in the physics of silicon pn junction solar cells including their transient response,” Prog. Quant. Electron., vol. 11, pp. 105204, 1987. 
[ 16 ]  S. C. Jain and D. J. Roulston, “A simple expression for band gap narrowing in heavily doped Si, Ge, GaAs and strained layers,” SolidState Electron., vol. 34, pp. 453465, 1991. 
[ 17 ]  D. B. M. Klaassen, J. W. Slotboom, and H. C. de Graaff, “Unified apparent band gap narrowing in n and ptype silicon,” SolidState Electron., vol. 35, pp. 125129, 1992; D. B. M. Klaassen, “A unified mobility model for device simulationII, ”Temperature dependence of carrier mobility and lifetime,” SolidState Electron., vol. 35, pp. 961967, 1992. 
[ 18 ]  M. A. Green, K. Emery, Y. Hisikawa, and W. Warta, “Solar cell efficiency Tables (Version 36),” Prog. Photovolt: Res. Appli., vol. 18, pp. 346352, 2010. 
[ 19 ]  M. A. Green, K. Emery, Y. Hisikawa, and W. Warta, “Solar cell efficiency Tables (Version 37),” Prog. Photovolt: Res. Appli., vol. 19, pp. 8492, 2011. 
[ 20 ]  A. Descoeudres, Z. C. Holman, L. Barraud, S. Morel, S. De Wolf, and C. Ballif, “21% efficiency silicon heterojunction solar cells on n and p type wafers compared,” IEEE Journal of Photovoltaics, vol. 3, pp. 8389, 2013. 
[ 21 ]  F. H. Alharbi and S. Kais, “Theoretical limits of photovoltaics efficiency and possible improvements by intuitive approaches learned from photosynthesis and quantum coherence, ”Renewable and sustainable energy reviews,” vol. 43, pp. 10731089, 2015. 
[ 22 ]  A. Cuevas, J. G. Fossum, and R. T. Young, “Influence of the dopant density profile on minoritycarrier current in shallow, heavily doped emitters of silicon bipolar devices,” SolidState Electron., vol. 28, pp. 247254, 1985. 
[ 23 ]  H. Van Cong, “A simple accurate solution to minority electron injection in the ptype heavily doped emitter region of silicon devices,” Physica Status Solidi A, Vol. 149, pp. 619628, 1995; H. Van Cong and G. Debiais, “About a conjunction between electrical and optical phenomena in ptype heavily doped silicon at room temperature,” Physica Status Solidi B, vol. 191, pp. 161169, 1995. 
[ 24 ]  M. A. Green, K. Emery, Y. Hisikawa, W. Warta, E. D. Dunlop, D. H. Levi, and A. W. Y. HoBaillie, “Solar cell efficiency Tables (Version 49),” Prog. Photovolt: Res. Appli., vol. 19, pp. 8492, 2011. 
[ 25 ]  A. Fell, K. R. McIntosh, P. P. Altermatt, G. J. M. Janssen, R. Stangl, A. HoBaillie, H. Steinkemper, J. Greulich, M. Müller, B. Min, K. C. Fong, M. Hermle, I. G. Romijn, and M. D. Abbott, “Input Parameters for the simulation of silicon solar cells in 2014,” IEEE J. Photovoltaics, vol. 5, pp. 12501263, 2015. 
[ 26 ]  H. Van Cong and G. Debiais, “Energy band structure parameters and their data, derived from the measurements of minority carrier current density in heavily doped emitters of silicon devices,” Solar Ener. Mater. and Solar Cells, vol. 45, pp. 385399, 1997; H. Van Cong and G. Debiais, “Apparent bandgap narrowing and its data derived from the measurements of minoritycarrier current density in heavily doped emitters of silicon devices,” Physica Status Solidi A, vol. 155, pp. 547553, 1996; H. Van Cong, “A new solution for minoritycarrier injection into the heavily doped emitter of silicon devices,” Physica Status Solidi A, vol. 171, pp. 631645, 1999. 
[ 27 ]  A. Richter, M. Hermle, and S. W. Glunz, “ Reassessment of the limiting efficiency for crystalline silicon solar cells,” IEEE J. Photovoltaics, vol. 3, pp. 11841191, 2013. 
[ 28 ]  R. S. Davidsen, H. Li, A. To, X. Wang, A. Han, J. An, J. Colwell, C. Chan, A. Wenham, M. S. Schmidt, A. Boisen, O. Hansen, S. Wenham, and A. Barnett, “Black silicon laserdoped selective emitter solar cell with 18.1% efficiency,” Sol. Energy Mater. Sol. Cells,” vol. 144, pp. 740747, 2016. 
[ 29 ]  M. A. Green, K. Emery, D. L. King, Y. Hisikawa, and W. Warta, “Solar cell efficiency Tables (Version 27),” Prog. Photovolt: Res. Appli., vol. 14, pp. 4551, 2006. 
[ 30 ]  M. A. Green, Y. Hishikawa, E. D. Dunlop, D. H. Levi, J. HohlEbinger, and A. W. Y. HoBaillie, “Solar cell efficiency tables (version 51),” Prog. Photovolt. Res. Appl., vol. 26, pp. 312, 2018. 
[ 31 ]  J. E. Lang, F. L. Madarasz, and P. M. Hemenger, “Temperature dependent density of states effective mass in nonparabolic ptype silicon,” J. Appl. Phys., vol. 54, pp. 36123612, 1983. 
[ 32 ]  M. A. Green, “Intrinsic concentration, effective densities of states, and effective mass in silicon,” J. Appl. Phys., vol. 67, pp. 29442954, 1990. 
[ 33 ]  H. Van Cong, “Band gap changes in excited intrinsic (heavily doped) Si and Ge semiconductors,” Physica B, vol. 405, pp. 11391149, 2010. 
[ 34 ]  R. Pässler, “Dispersionrelated description of temperature dependencies of band gaps in semiconductors,” Phys. Rev. B, vol. 66, p. 085201, 2002. 
[ 35 ]  R. Pässler, “Semiempirical descriptions of temperature dependences of band gaps in semiconductors,” Physica Status Solidi B, vol. 236, pp. 710728, 2003. 
[ 36 ]  O. HenriRousseau and P. Blaise, Quantum Oscillators, edited by John Wiley & Sons, Inc., Hoboken, New Jersey, 2011; O. HenriRousseau, Physique Théorique et Réalité, edited by Collection Etudes, Presses Universitaires de Perpignan, 2018. 
[ 37 ]  A. B. Sproul and M. A. Green, “Improved value for the silicon intrinsic carrier concentration from 275 to 375 K,” J. Appl. Phys., vol. 70, pp. 846854, 1991; A. B. Sproul and M. A. Green, “Intrinsic carrier concentration and minoritycarrier mobility of silicon from 77 to 300 K,” J. Appl. Phys., vol. 73, pp. 12141225, 1993. 
[ 38 ]  K. Misiakos and D. Tsamakis, “Accurate measurements of the silicon intrinsic carrier density from 77 to 340 K,” J. Appl. Phys., vol. 74, pp. 32933297, 1993. 
[ 39 ]  R. Couderc, M. Amara, and M. Lemiti, “Reassessment of the intrinsic carrier density temperature dependence in crystalline silicon,” J. Appl. Phys., vol. 115, p. 093705, 2014. 
[ 40 ]  H. Van Cong and G. Debiais, “A simple accurate expression of the reduced Fermi energy for any reduced carrier density,” J. Appl. Phys., vol. 73, pp. 154515463, 1993. 
[ 41 ]  H. Van Cong and B. Doan Khanh, “Simple accurate general expression of the FermiDirac integral for arbitrary a and j> 1,” SolidState Electron., vol. 35, pp. 949951, 1992; H. Van Cong, “New series representation of FermiDirac integral for arbitrary j> 1, and its effect on for integer j,” SolidState Electron., vol. 34, pp. 489492, 1991. 
[ 42 ]  H. Van Cong, S. Abide, B. Zeghmati, and X. Chesneau, “Optical band gap in various impuritySi systems from the metalinsulator transition study,” Physica B, vol. 436, pp. 130139, 2014. 
[ 43 ]  H. Van Cong, “Effects of impurity size and heavy doping on energybandstructure parameters of various impuritySi systems,” Physica B, vol. 487, pp. 90101, 2016. 
[ 44 ]  H. Van Cong, “Effects of donor size and heavy doping on optical, electrical and thermoelectric properties of various degenerate donorsilicon systems at low temperatures,” American Journal of Modern Physics, vol. 7, pp. 136165, 2018; H. Van Cong, S. Brunet, and J. C. Martin, “Size effect on different impurity levels in semiconductors,” Solid State Commun., vol. 49, pp. 697699, 1984. 
[ 45 ]  J. Wagner and J. A. del Alamo, “Bandgap narrowing in heavily doped silicon: A comparison of optical and electrical data,” J. Appl. Phys., vol. 63, pp. 425429, 1988. 
[ 46 ]  H. Van Cong, “Fermi energy and bandtail parameters in heavily doped semiconductors,” J. Phys. Chem. Solids, vol. 36, pp. 12371240, 1975. 