First-principles calculations of stacking fault energy in titanium alloys

Volume 1, Issue 1, October 2016     |     PP. 1-10      |     PDF (319 K)    |     Pub. Date: October 16, 2016
DOI:    488 Downloads     7193 Views  

Author(s)

Angyang Yu, Ludong University, Yantai, Shandong province, 264025, China

Abstract
The research of plastic deformation of metals attaches great importance to stacking fault energy (SFE). In this paper, we derive the expressions of four types (I1, I2, E and T2) of basal plane SFEs of hcp-Ti within the framework of the Ising model. Based on this model, alloying effects on the stacking fault energy (SFE) of titanium alloys are investigated via first-principles calculations. It is found that SFE always decreases with addition of alloying elements. The distribution of lattice parameters of all the studied Ti95X5 has a direct relationship with alloying element’s atomic radii. Additionally, SFEs decrease linearly with the solutes concentration increasing in the Ti-based alloys. This work provides some useful data for new Ti alloys design.

Keywords
Stacking fault energy; Ising model; Alloying and concentration effects; First-principles calculations

Cite this paper
Angyang Yu, First-principles calculations of stacking fault energy in titanium alloys , SCIREA Journal of Physics. Volume 1, Issue 1, October 2016 | PP. 1-10.

References

[ 1 ] E.A. Loria. Quo vadis gamma titanium aluminide. Intermetallics 9 (2001) 997-1001
[ 2 ] Legrand B 1984 Influence de la structure electronique sur la facilit´ e relative des glissements dans les m´ etaux de´structure hexagonale compacte PhD Thesis Universite Pierre et Marie Curie, Paris, France´
[ 3 ] Legrand B 1985 Structure du coeur des dislocations vis 1/3a<1 1 2 0> dans le titane Phil. Mag. A 52 83–97
[ 4 ] Legrand P B 1984 Relations entre la structure lectronique et la facilit de glissement dans les mtaux hexagonaux compacts Phil. Mag. B 49 171–84
[ 5 ] Legrand B 1986 Comment on ‘computer simulation of dislocation cores in h.c.p. metals’ by D J Bacon and M H Liang Phil. Mag. A 54 43–4
[ 6 ] Guo Z, Miodownik AP, Saunders N, Schille HP. Influence of stacking-fault energy on high temperature creep of alpha titanium alloys. Scripta Materialia 54 (2006) 2175–2178
[ 7 ] Wu X, Wang R and Wang S. Generalized-stacking-fault energy and surface properties for hcp metals: a first-principles study. Applied Surface Science 256 (2010) 3409–3412
[ 8 ] Kwasniak, P.; Muzyk, M.; Garbacz, H. et al. Influence of C, H, N, and O interstitial atoms on deformation mechanism in titanium-First principles calculations of generalized stacking fault energy. Materials Letters 94 (2013) 92–94
[ 9 ] Piotr Kwasniak, Piotr´ Spiewak, Halina Garbacz, and Krzysztof J. Kurzydłowski PHYSICAL REVIEW B 89, 144105 (2014)
[ 10 ] Magali Benoit, Nathalie Tarrat. Modelling Simul. Mater. Sci. Eng. 21 (2013) 015009 (17pp)
[ 11 ] Chetty N, Weinert M. Phys Rev B 1997; 56:10844.
[ 12 ] Wright AF. J Appl Phys 1997;82:5259.
[ 13 ] Andersen OK, Jepsen O, Krier G. In: Kumar V, Andersen OK, Mookerjee A, editors. Lectures on methods of electronic structure calculations. Singapore: World Scientific; 1994. p.63.
[ 14 ] Vitos L, Skriver HL, Johansson B, Kolla´r J. Comp Mater Sci. 2000; 18:24.
[ 15 ] Vitos L, Abrikosov IA, Johansson B. Phys Rev Lett 2001; 87:156401.
[ 16 ] Soven P. Phys Rev 1967; 156:809.
[ 17 ] Vitos L, Nilsson J-O, Johansson B. Acta Mater 2006; 54:3821.
[ 18 ] Lu J, Hultman L, Holmstrom E, Antonsson KH, Grehk M, Li W, Vitos L, Golpayegani A. Stacking fault energies in austenitic stainless steels. ACTA MATERIALIA. 111 (2016) 39-46 DOI: 10.1016/j.actamat.2016.03.042
[ 19 ] Dick A, Hickel T, Neugebauer J. Steel Res Int 2009; 80:603
[ 20 ] Ostanin S A and Trubitsin V Y 1997 A simple model for calculating the P-T phase diagram of Ti J. Phys.
[ 21 ] Domain C and Legris A. Investigation of glide properties in hexagonal titanium and zirconium: an ab initioatomic scale study IUTAM Symp. on Mesoscopic Dynamics of Fracture Process and Materials Strength: Solid Mechanics and its Applications (Osaka) 2004; vol 115 pp 411–420 ed Y Shibutani and H Kitagawa (Berlin: Springer)
[ 22 ] Trinkle DR, Jones MD, Hennig RG, Rudin SP, Albers RC and Wilkins JW. Empirical tight-binding model for titanium phase transformations, Phys. Rev. B 2006; 73: 094123
[ 23 ] Partridge P 1967 Metall. Rev. 118 169