Cementation of Cu (II) by zinc electrode in presence of carbohydrates and its application on samples of industrial wastewater
DOI: 282 Downloads 6907 Views
Author(s)
Abstract
The cementation of copper ions (ii) from aqueous solution onto zinc electrode was investigated. The rate of copper (ii) removal was studied as a function of initial copper concentration, speed of rotation, temperature, and the addition of certain carbohydrates. The rate of cementation of copper on zinc cylinder is enhanced by increasing initial copper concentration, stirring and temperature. It was found that mannose improves the rate of copper cementation, while starch, maltose, sucrose and fructose inhibit it. The adsorption isotherm data obtained from the present study were analyzed in the light of Langmuir and Temkin isotherms. Activation parameters and isokinetic relationship were calculated and discussed. The cementation process was successfully applied to recover Cu2+ spiked into two an industrial wastewater samples. The recovery percentage of Cu2+ increases in the presence of mannose about (95.6 %) and (98.3 %) for the samples (I) and (ІІ), respectively.
Keywords
Cementation; Copper ion; Carbohydrates; Isotherms models.
Cite this paper
Asia. A. Taha, Abdel-Monem. M. Ahmed, Hanaa.H. Abdel Rahman, Mohammed. A. Shreadah, Abeer.A.M.El-Sayed,
Cementation of Cu (II) by zinc electrode in presence of carbohydrates and its application on samples of industrial wastewater
, SCIREA Journal of Chemistry.
Volume 4, Issue 1, February 2019 | PP. 20-58.
References
[ 1 ] | A. A. Taha, M. G. Marei and D. E. Abd El-Khalek, J. Mater. Sci. Technol. 20, 539 (2004). |
[ 2 ] | Y. S. Ho, and G. Mckay, Process Biochem. 38, 1047 (2003). |
[ 3 ] | A. Dib and L. Makhlofi, Chem. Eng. Process 43, 1265 (2004). |
[ 4 ] | A. K. SenGupta, Y. Marcus and J. A. Marinsky, Marcel Dekker, Inc. New York 16, (2004). |
[ 5 ] | S. J.G. Casaroli, B. Cohen, A.R. Tong, P. Linkson and J.G. Petrie, Minerals Eng. 18, 1282 (2005). |
[ 6 ] | S. R. Younsei, H. Alimadadi, E.K. Alamdari and S.P.H. Marashi, Hydrometallurgy 84, 155 (2006). |
[ 7 ] | A. A. Taha, Port. Electrochim. Acta 22, 103 (2004). |
[ 8 ] | M. El-Batouti, J. Colloid Interface Sci. 283, 123 (2005). |
[ 9 ] | F. Gros, S. Baup, and M. Aurousseau, Chem. Eng. Process. 47, 295 (2008). |
[ 10 ] | A.H. Konsowa, Desalination 254, 29 (2010). |
[ 11 ] | M. H. Abdel-Aziz, Hydrometallurgy 109, 161 (2011). |
[ 12 ] | I. Ahmed, Y. El-Nadi, and J. Daoud, Hydrometallurgy 110, 62 (2011). |
[ 13 ] | H. H. Abdel-Rahman, A. H. E. Moustafa, S. M. Abd-Elhamid and M. G. A. A. Kassem, Electrochem. 82, 88 (2014). |
[ 14 ] | H. Schiweck, M. Clarke and G. Pollach, Encyclopedia Industrial Chemistry, Wiley-VCH, Weinheim (2007). |
[ 15 ] | M. Anthea, J. Hopleins, CH. W. Mc Laughlin, S. Johnson, M. Q. Warner, D. Lattart and J. D. Wright, Human biology and health, Englewood Cliffs, New Jersey, USA, Prentice Hall 52 (1993). |
[ 16 ] | D. P. Gregory and A. C. Riddiford, J. Electrochem. Soc. 107, 950 (1960). |
[ 17 ] | S. A. Nosier and S. A. Sallam, Sep.purif. Technol. 18, 93 (2000). |
[ 18 ] | G. D. Sulka and M. Jaskula, Hydrometallurgy 64, 13 (2002). |
[ 19 ] | A. Ekmekyapar, M. Tanaydin and N. Demirkiran, Physicochem. Probl. Miner. Process. 48, 355 (2012). |
[ 20 ] | S. A. Sallam, Egypt. J. Chem. 44, 111 (2001). |
[ 21 ] | A. A. Taha and S. A. H. Abd El-Ghani, J. Colloid Interface Sci. 280, 9 (2004). |
[ 22 ] | N. K. Amin, E.-S. Z. El-Ashtoukhy, Can. J. Chem. Eng. 89, 609 (2011). |
[ 23 ] | N. Demirkiran and A. Künkül, Trans. Nonferrous Met. Soc. China 21, 2778 (2011). |
[ 24 ] | N. K. Amin, E.-S. Z. El-Ashtoukhy and O. Abdelwahab, Hydrometallurgy 89, 224 (2007). |
[ 25 ] | A. H. Elshazly, Alex. Eng. J. 44, 789 (2005). |
[ 26 ] | Y. Ku, M.-H. Wu and Y.-S. Shen, Sep. Sci. Technol. 37, 571 (2002). |
[ 27 ] | N. D. Pragnesh, N. Subrahmanyam and S. Sharma, Indian J. Chem. Technol. 16 , 234 (2009). |
[ 28 ] | Y. Ku, M.-H. Wu and Y.-S. Shen, Waste Manage. 22, 721 (2002). |
[ 29 ] | A. C. Alonso, F. J. Fernandez, K. Worbel and J. F. G. Corona, Chemosphere 76, 43 (2009). |
[ 30 ] | M. Reynolds and S. Pérez, C. R. Chim. 14, 74 (2009). |
[ 31 ] | R. D. Vander Weijden, J. Mahabir, A. Abbadi and M. A. Reuter, Hydrometallurgy 64, 131 (2002). |
[ 32 ] | R. M. Lamya and L. Lorenzen, J. S. Afr. Inst. Min. Metall. 105, 21 (2005). |
[ 33 ] | F. M. Bayoumi and W. A. Ghanem, Mater. Lett. 59, 3806 (2005). |
[ 34 ] | L. Tang, X. Li, Y. Si, G. Mu and G. Liu, Mater. Chem. Phys. 95, 29 (2006). |
[ 35 ] | V. Chandradrase and K. Kannan, Bull. Electrochem. 20, 471 (2004). |
[ 36 ] | E. E. Oguzie, B. N. Okolue, C. E. Ogukwe, A. I. Onuchukwu and C. Unaegbu, Bull. Electrochem. 20, 421 (2004). |
[ 37 ] | I. Safarik, F. T. R. Luis, B. Marie, M. S. Ewa, F. Weyda and S. Mirka, Enzyme Microb. Technol. 40, 1551 (2007). |
[ 38 ] | O. Abdelwahab, Egypt. J. Aquat. Res. 33, 125 (2007). |
[ 39 ] | B. R. Babu and R. Holze, Br. Corros. J. 35, 204 (2000). |
[ 40 ] | L. B. Tang, G. N. Mu and G. H. Liu, Corros. Sci. 45, 2251 (2003). |
[ 41 ] | J. Flis and T. Zakroczymski, J. Electrochem. Soc. 143, 2458 (1996). |
[ 42 ] | Y. P. Kumar, P. King and V. S. R. K. Prasad, J. Hazard. Mater. 137, 1211 (2006). |