In vitro efficacy of cinnamon derived copper nanoconjugates against drug-resistant and sensitive strains of Mycobacterium tuberculosis

Volume 8, Issue 4, August 2024     |     PP. 139-153      |     PDF (432 K)    |     Pub. Date: August 16, 2024
DOI: 10.54647/isss120357    35 Downloads     2316 Views  

Author(s)

Pratheeka Rajan, PG & Research Department of Biotechnology Women’s Christian College 51 College Road, Subha Rao Avenue, Chennai – 6 , Tamil Nadu, India
Anchana Devi, PG & Research Department of Biotechnology Women’s Christian College 51 College Road, Subha Rao Avenue, Chennai – 6 , Tamil Nadu, India
Angayarkanni B, Department of Bacteriology ICMR- National institute for Research in Tuberculosis Chennai, Tamil Nadu, India
Azger Dusthackeer, Department of Bacteriology ICMR- National institute for Research in Tuberculosis, Chennai, Tamil Nadu, India
Priya R Iyer, PG & Research Department of Biotechnology Women’s Christian College 51 College Road, Subha Rao Avenue, Chennai – 6 , Tamil Nadu, India

Abstract
Background: Tuberculosis is a chronic infectious disease that is caused by Mycobacterium tuberculosis. In the treatment forefront there are drugs like rifampicin, pyrazinamide, isoniazid that are used. However, long-term use of these medications causes multidrug-resistant bacteria and drug-induced liver damage. In the present study, the effect of the test drug (nano-conjugate) synthesized from Cinnamon was tested for its anti-tuberculosis activity by broth microdilution method. In addition, its efficacy was further tested against multi drug resistant and sensitive strains of tuberculosis.
Results: The initial Minimum Inhibitory Concentration of the nanoconjugate was found to be 250 μg/ml against the M. tuberculosis strain H37Rv. Furthermore, it was effective against the sensitive and resistant strains of tuberculosis with a MIC of 250 and 500 μg/ml respectively.
Conclusion: The current investigation found a prospective anti-tuberculosis drug candidate which could aid in the rational creation of more potent medications against tuberculosis.

Keywords
Tuberculosis, nanodrug, Minimum Inhibitory Concentration

Cite this paper
Pratheeka Rajan, Anchana Devi, Angayarkanni B, Azger Dusthackeer, Priya R Iyer, In vitro efficacy of cinnamon derived copper nanoconjugates against drug-resistant and sensitive strains of Mycobacterium tuberculosis , SCIREA Journal of Information Science and Systems Science. Volume 8, Issue 4, August 2024 | PP. 139-153. 10.54647/isss120357

References

[ 1 ] Adewale Akintelu, S., Kolawole Oyebamiji, A., Charles Olugbeko, S., & Felix Latona, D. (2021). Green chemistry approach towards the synthesis of copper nanoparticles and its potential applications as therapeutic agents and environmental control. Current Research in Green and Sustainable Chemistry, 4, 100176. https://doi.org/10.1016/j.crgsc.2021.100176
[ 2 ] Altammar, K. A. (2023). A review on nanoparticles: Characteristics, synthesis, applications, and challenges. Frontiers in Microbiology, 14, 1155622. https://doi.org/10.3389/fmicb.2023.1155622
[ 3 ] Ansari, M. A., Murali, M., Prasad, D., Alzohairy, M. A., Almatroudi, A., Alomary, M. N., Udayashankar, A. C., Singh, S. B., Asiri, S. M. M., Ashwini, B. S., Gowtham, H. G., Kalegowda, N., Amruthesh, K. N., Lakshmeesha, T. R., & Niranjana, S. R. (2020). Cinnamomum verum Bark Extract Mediated Green Synthesis of ZnO Nanoparticles and Their Antibacterial Potentiality. Biomolecules, 10(2), 336. https://doi.org/10.3390/biom10020336
[ 4 ] Antonio-Pérez, A., Durán-Armenta, L. F., Pérez-Loredo, M. G., & Torres-Huerta, A. L. (2023). Biosynthesis of Copper Nanoparticles with Medicinal Plants Extracts: From Extraction Methods to Applications. Micromachines, 14(10), 1882. https://doi.org/10.3390/mi14101882
[ 5 ] Bhavyasree, P. G., & Xavier, T. S. (2022). Green synthesised copper and copper oxide based nanomaterials using plant extracts and their application in antimicrobial activity: Review. Current Research in Green and Sustainable Chemistry, 5, 100249. https://doi.org/10.1016/j.crgsc.2021.100249
[ 6 ] Chaachouay, N., & Zidane, L. (2024). Plant-Derived Natural Products: A Source for Drug Discovery and Development. Drugs and Drug Candidates, 3(1), 184–207. https://doi.org/10.3390/ddc3010011
[ 7 ] Chand Mali, S., Raj, S., & Trivedi, R. (2019). Biosynthesis of copper oxide nanoparticles using Enicostemma axillare (Lam.) leaf extract. Biochemistry and Biophysics Reports, 20, 100699. https://doi.org/10.1016/j.bbrep.2019.100699
[ 8 ] Chinsembu, K. C. (2016). Tuberculosis and nature’s pharmacy of putative anti-tuberculosis agents. Acta Tropica, 153, 46–56. https://doi.org/10.1016/j.actatropica.2015.10.004
[ 9 ] G, B. P., & S, X. T. (2021). A critical green biosynthesis of novel CuO/C porous nanocomposite via the aqueous leaf extract of Ficus religiosa and their antimicrobial, antioxidant, and adsorption properties. Chemical Engineering Journal Advances, 8, 100152. https://doi.org/10.1016/j.ceja.2021.100152
[ 10 ] Gawande, M. B., Goswami, A., Felpin, F.-X., Asefa, T., Huang, X., Silva, R., Zou, X., Zboril, R., & Varma, R. S. (2016). Cu and Cu-Based Nanoparticles: Synthesis and Applications in Catalysis. Chemical Reviews, 116(6), 3722–3811. https://doi.org/10.1021/acs.chemrev.5b00482
[ 11 ] Gillespie, S. H., Crook, A. M., McHugh, T. D., Mendel, C. M., Meredith, S. K., Murray, S. R., Pappas, F., Phillips, P. P. J., & Nunn, A. J. (2014). Four-Month Moxifloxacin-Based Regimens for Drug-Sensitive Tuberculosis. New England Journal of Medicine, 371(17), 1577–1587. https://doi.org/10.1056/NEJMoa1407426
[ 12 ] Gowda, S., & Sriram, S. (2023). Green synthesis of chitosan silver nanocomposites and their antifungal activity against Colletotrichum truncatum causing anthracnose in chillies. Plant Nano Biology, 5, 100041. https://doi.org/10.1016/j.plana.2023.100041
[ 13 ] Gupta, A., Pandey, S., & Yadav, J. S. (2020). A Review on Recent Trends in Green Synthesis of Gold Nanoparticles for Tuberculosis. Advanced Pharmaceutical Bulletin, 11(1), 10–27. https://doi.org/10.34172/apb.2021.002
[ 14 ] Ivanova, I. A., Daskalova, D. S., Yordanova, L. P., & Pavlova, E. L. (2024). Copper and Copper Nanoparticles Applications and Their Role against Infections: A Minireview. Processes, 12(2), 352. https://doi.org/10.3390/pr12020352
[ 15 ] Kothari, R. (2023). GREEN SYNTHESIS OF COPPER NANOPARTICLES FROM AN EXTRACT OF CINNAMON BARK: SPECTROSCOPIC CHARACTERIZATION, OPTICAL PROPERTIES, ANTIMICROBIAL, AND ANTIOXIDANT ACTIVITIES. RASAYAN Journal of Chemistry, 16(03), 1298–1308. https://doi.org/10.31788/RJC.2023.1638274
[ 16 ] Koul, A., Arnoult, E., Lounis, N., Guillemont, J., & Andries, K. (2011). The challenge of new drug discovery for tuberculosis. Nature, 469(7331), 483–490. https://doi.org/10.1038/nature09657
[ 17 ] Maher, D., & Raviglione, M. (2005). Global Epidemiology of Tuberculosis. Clinics in Chest Medicine, 26(2), 167–182. https://doi.org/10.1016/j.ccm.2005.02.009
[ 18 ] Makane, V. B., Krishna, V. S., Krishna, E. V., Shukla, M., Mahizhaveni, B., Misra, S., Chopra, S., Sriram, D., Dusthackeer, V. N. A., & Rode, H. B. (2019). Synthesis and evaluation of α-aminoacyl amides as antitubercular agents effective on drug resistant tuberculosis. European Journal of Medicinal Chemistry, 164, 665–677. https://doi.org/10.1016/j.ejmech.2019.01.002
[ 19 ] Manivasagan, P., Khan, F., Hoang, G., Mondal, S., Kim, H., Hoang Minh Doan, V., Kim, Y.-M., & Oh, J. (2019). Thiol chitosan-wrapped gold nanoshells for near-infrared laser-induced photothermal destruction of antibiotic-resistant bacteria. Carbohydrate Polymers, 225, 115228. https://doi.org/10.1016/j.carbpol.2019.115228
[ 20 ] Mohamed, E. A. (2020). Green synthesis of copper & copper oxide nanoparticles using the extract of seedless dates. Heliyon, 6(1), e03123. https://doi.org/10.1016/j.heliyon.2019.e03123
[ 21 ] National Toxicology Program. (2004). NTP toxicology and carcinogenesis studies of trans-cinnamaldehyde (CAS No. 14371-10-9) in F344/N rats and B6C3F1 mice (feed studies). National Toxicology Program Technical Report Series, 514, 1–281.
[ 22 ] Ravimohan, S., Kornfeld, H., Weissman, D., & Bisson, G. P. (2018). Tuberculosis and lung damage: From epidemiology to pathophysiology. European Respiratory Review, 27(147), 170077. https://doi.org/10.1183/16000617.0077-2017
[ 23 ] Restrepo, C. V., & Villa, C. C. (2021). Synthesis of silver nanoparticles, influence of capping agents, and dependence on size and shape: A review. Environmental Nanotechnology, Monitoring & Management, 15, 100428. https://doi.org/10.1016/j.enmm.2021.100428
[ 24 ] Sarangi, A., Das, B. S., Patnaik, G., Sarkar, S., Debnath, M., Mohan, M., & Bhattacharya, D. (2021). Potent anti‐mycobacterial and immunomodulatory activity of some bioactive molecules of Indian ethnomedicinal plants that have the potential to enter in TB management. Journal of Applied Microbiology, 131(4), 1578–1599. https://doi.org/10.1111/jam.15088
[ 25 ] Sarkar, J., Chakraborty, N., Chatterjee, A., Bhattacharjee, A., Dasgupta, D., & Acharya, K. (2020). Green Synthesized Copper Oxide Nanoparticles Ameliorate Defence and Antioxidant Enzymes in Lens culinaris. Nanomaterials, 10(2), 312. https://doi.org/10.3390/nano10020312
[ 26 ] Sawicki, R., Golus, J., Przekora, A., Ludwiczuk, A., Sieniawska, E., & Ginalska, G. (2018). Antimycobacterial Activity of Cinnamaldehyde in a Mycobacterium tuberculosis(H37Ra) Model. Molecules, 23(9), 2381. https://doi.org/10.3390/molecules23092381
[ 27 ] Sergio, A.-O., Fabiola, C.-V., Guadalupe, N.-M., Blanca, R.-C., & León, H.-O. (2013). Evaluation of antimycobacterium activity of the essential oils of cumin (<i>Cuminum cyminum</i>), clove (Eugenia caryophyllata), cinnamon (<i>Cinnamomum verum</i>), laurel (<i>Laurus nobilis</i>) and anis (<i>Pimpinella anisum</i>) against <i>Mycobacterium tuberculosis</i> Advances in Biological Chemistry, 03(05), 480–484. https://doi.org/10.4236/abc.2013.35052
[ 28 ] Seung, K. J., Keshavjee, S., & Rich, M. L. (2015). Multidrug-Resistant Tuberculosis and Extensively Drug-Resistant Tuberculosis. Cold Spring Harbor Perspectives in Medicine, 5(9), a017863. https://doi.org/10.1101/cshperspect.a017863
[ 29 ] Tweed, C. D., Dawson, R., Burger, D. A., Conradie, A., Crook, A. M., Mendel, C. M., Conradie, F., Diacon, A. H., Ntinginya, N. E., Everitt, D. E., Haraka, F., Li, M., Van Niekerk, C. H., Okwera, A., Rassool, M. S., Reither, K., Sebe, M. A., Staples, S., Variava, E., & Spigelman, M. (2019). Bedaquiline, moxifloxacin, pretomanid, and pyrazinamide during the first 8 weeks of treatment of patients with drug-susceptible or drug-resistant pulmonary tuberculosis: A multicentre, open-label, partially randomised, phase 2b trial. The Lancet Respiratory Medicine, 7(12), 1048–1058. https://doi.org/10.1016/S2213-2600(19)30366-2
[ 30 ] Vaidya, S., Maniar, J., & Sharma, J. (2020). In-vitro effect of bioactive fractions of Cinnamomum verum(Cv) on cytokine levels in Mycobacterium tuberculosis (MTB) infected Macrophages. Tuberculosis, 2803. https://doi.org/10.1183/13993003.congress-2020.2803
[ 31 ] Vaidya, S., Sharma, J., Maniar, J., Prabhu, N., Mamawala, M., Joshi-Pundit, S., & Chowdhary, A. (2016). Assessment of anti-tuberculosis activity of extracts of cinnamomum verum and solanun surattense along with isoniazid. 10.2 Tuberculosis, PA2691. https://doi.org/10.1183/13993003.congress-2016.PA2691
[ 32 ] Wan, C.-J., Zhang, Y., Liu, C.-X., & Yang, Z.-C. (2022). Cinnamic aldehyde, isolated from Cinnamomum cassia, alone and in combination with pyrazinamide against Mycobacterium tuberculosis in vitro and in vivo. South African Journal of Botany, 144, 200–205. https://doi.org/10.1016/j.sajb.2021.08.009
[ 33 ] Xu, J.-W., Yao, K., & Xu, Z.-K. (2019). Nanomaterials with a photothermal effect for antibacterial activities: An overview. Nanoscale, 11(18), 8680–8691. https://doi.org/10.1039/C9NR01833F
[ 34 ] Xu, Y., Liang, B., Kong, C., & Sun, Z. (2021). Traditional Medicinal Plants as a Source of Antituberculosis Drugs: A System Review. BioMed Research International, 2021, 1–36. https://doi.org/10.1155/2021/9910365