Acoustic method of resonant length calculation of ultrasonic waveguides for nanodispersions
DOI: 357 Downloads 7711 Views
Author(s)
Abstract
In this article, the parameters required for an acoustic waveguide (concentrator) to produce acoustic cavitation effects in an ultrasonicator are derived. The derivation is based on the solutions to complex valued wave equations. Based on the derived equations, the length of the concentrator required to produce acoustic cavitation effects for various concentrator shapes can be found. The theoretical results are confirmed through experiment.
Keywords
acoustic cavitation; ultrasonic dispersion; nanotechnology; nanopowder; resonance; waveguides; concentrator
Cite this paper
B.B.Damdinov, N.S. Khiterkheeva, А.V. Nomoev, V.Ts. Lygdenov, M. Schreiber,
Acoustic method of resonant length calculation of ultrasonic waveguides for nanodispersions
, SCIREA Journal of Electrical Engineering.
Volume 1, Issue 2, December 2016 | PP. 39-52.
References
[ 1 ] | M.A. Isakovich, Y.I. Kitaygorodsky, V.E. Lyamov, I.B. Naidyonova, Little Encyclopedia: Ultrasound. Ed. I.P. Golyamina. Soviet Encyclopedia, Moscow, 1979. [in Russian] |
[ 2 ] | M.V. Landau, L. Vradman, M. Herskowitz, Y. Koltypin, A. Gedanken, Ultrasonically Controlled Deposition–Precipitation: Co–Mo HDS Catalysts Deposited on Wide-Pore MCM Material, J. Catal. 201 (2001) 22-36. |
[ 3 ] | B.B. Damdinov, L.U. Bazaron, B.B., Badmaev et al, Molecular weigth and dynamic properties of polystyrene solutions// Russian Journal of Applied Chemistry. 2004. V.77.№5. P.826-829. |
[ 4 ] | E. Marhasin, M. Grintzova, V. Pekker, Y. Melnik, High power ultrasonic reactor for sonochemical applications, US Patent # US 7157058 B2, 2 January 2007 . |
[ 5 ] | A. Sesis, M. Hodnett, G. Memoli, Influence of Acoustic Cavitation on the Controlled Ultrasonic Dispersion of Carbon Nanotubes, J. Phys. Chem. B. 117 (2013) 15141-15150. |
[ 6 ] | M.M. Katasonov, H.J. Sung, S.P. Bardakhanov, Wake flow-induced acoustic resonance around a long flat plate in a duct, J. Eng. Thermophys. 24 (2015) 1-20. |
[ 7 ] | A.V. Nomoev, V.T. Lygdenov, Impact of silica nanopowder on wear resistance of paint coating. Nanotechnologies in Construction: A Scientific Internet-Journal. 3 (2010) 19-20. [in Russian] |
[ 8 ] | V.V. Syzrantsev, K.V. Zobov, A.P. Zavjalova, S.P. Bardakhanov, The associated layer and viscosity of nanoliquids. Doklady Physics. 60 (2015) 46–48. |
[ 9 ] | A.Y. Baranchikov, V.K. Ivanov, Y.D. Tretyakov, Sonochemical synthesis of inorganic materials. Russ. Chem. Rev. 76 (2007) 133-151. |
[ 10 ] | A.V. Tikhonravova, About the optimal form of concentrators for ultrasonic oscillations. Akust. Zh. 26 (1980) 274-280. [in Russian] |
[ 11 ] | V.I. Bashkirov, Y.I. Kitaygorodsky, N.N. Khavsky, Ultrasonic technology. Ed. B.A. Agranat, Metallurgy, Moscow, 1974. [in Russian] |
[ 12 ] | S.K. Khiterkheev, N.S. Khiterkheeva, Cavitational heat and mass transfer devices. ESSTU, Ulan-Ude, 1999. [in Russian] |
[ 13 ] | J.W. Strutt (Lord Rayleigh), Theory of Sound. Macmillon, London, 1894. |
[ 14 ] | L.G. Merkulov, Calculation of ultrasonic concentrators. Acoustical Physics. 3 (1957) 230-238. [in Russian] |
[ 15 ] | L.G. Merkulov, A.V. Kharitonov, Theory and Design of composite concentrators. Acoustical Physics. 5 (1959) 184-189. [in Russian] |
[ 16 ] | N.S. Khiterkheeva, S.P. Bardakhanov, A.V. Nomoev, S.S. Uladaeva, Method of dispersion of nanosized silicon dioxide powder by ultrasound. RU patent # RU2508963 C2. 10 March 2014. [in Russian] |