Volume 3, Number 1 (2018)
Year Launched: 2016
Journal Menu
Archive
Previous Issues
Why Us
-  Open Access
-  Peer-reviewed
-  Rapid publication
-  Lifetime hosting
-  Free indexing service
-  Free promotion service
-  More citations
-  Search engine friendly
Contact Us
Email:   service@scirea.org
Home > Journals > SCIREA Journal of Materials > Archive > Paper Information

Potentiostatic electrosynthesis of cerium conversion coatings on AA2024-T3 aircraft alloy in diammonium pentanitrocerate solutions

Volume 3, Issue 1, February 2018    |    PP. 10-36    |PDF (1281 K)|    Pub. Date: April 9, 2018
105 Downloads     1135 Views  

Author(s)
S. Kozhukharov, Laboratory for Advanced Materials Research, University of Chemical Technology and Metallurgy, 8 Kl. Okhridsky blvd., 1756-Sofia, Bulgaria
Christian Girginov, Department of Chemical Sciences, University of Chemical Technology and Metallurgy, 8 Kl. Okhridsky blvd., 1756-Sofia, Bulgaria

Abstract
Cerium conversion coatings (CeCC) have been synthesized for corrosion protection of AA2024-T3 aircraft alloy through application of potentiostatic regime in aqueous solutions of diammonium pentanitrocerate - (NH4)2Ce(NO3)5. This cerium compound is used for first time for this purpose. The impact of the following deposition parameters: precursor solution concentration, the quantity of the H2O2 addition, the applied cathodic potential value, and the deposition duration on the deposition kinetics, the surface morphology, the microstructure, and the composition of the obtained coatings is investigated. At the initial stage, the process is diffusion controlled, and subsequently it becomes be controlled by the CeCC nucleation and growth rate, following the island like growth mechanism, typical for this alloy. It has been established that the coatings obtained from 0,03 М (NH4)2Ce(NO3)5 solutions, with Н2О2 addition in molar ratio between 2:1 and 4:1 in respect to Ce content, and applied potential Е = – 1,0 V for 360 s possess uniform morphology and good adherence to the substrate. These optimal conditions are confirmed by quantitative evaluation of the coating roughness using Atomic Force Microscopy (AFM). The investigations, performed by Scanning Electron Microscopy (SEM), Energy Dispersion and Photoelectron Spectroscopy methods (EDS) and (XPS) reveal that the coatings possess net like structure (type «dry land»), being a mixture of Се(III) and Ce(IV) oxides. The best coatings elaborated reach total Cerium content superior to 57 %wt, with Ce(IV) to Ce(III) relation equal to 85 : 15wt. %.

Keywords
AA2024-T3 Alloy; Rare earth elements; Electrodepositited films; AFM; SEM; XPS.

Cite this paper
S. Kozhukharov, Christian Girginov, Potentiostatic electrosynthesis of cerium conversion coatings on AA2024-T3 aircraft alloy in diammonium pentanitrocerate solutions, SCIREA Journal of Materials. Vol. 3 , No. 1 , 2018 , pp. 10 - 36 .

References

[ 1 ] L. E. M. Palomino, I. V. Aoki, H. G. de Melo, Microstructural and electrochemical characterization of Ce conversion layers formed on Al alloy 2024-T3 covered with Cu-rich smut, Electrochim Acta, 5 (2006) 5943–5953.
[ 2 ] K. A. Yasakau, M. L. Zheludkevich, S. V. Lamaka, M. G. S. Ferreira, Mechanism of corrosion inhibition of AA2024 by rare-earth compounds, J. Phys. Chem. B, 110 (2006) 5515-5528
[ 3 ] M. Bethencourt, F. J. Botana, M. J. Cano, M. Marcos, J. M. Sánchez-Amaya, L. González-Rovira, Behaviour of the alloy AA2017 in aqueous solutions of NaCl. Part I: Corrosion mechanisms, Corros. Sci. 51 (2009) 518-524.
[ 4 ] M. Bethencourt, F. J. Botana, J. J. Calvino, M. Marcos, M. A. Rodriguez-Chacon, Lanthanide compounds as environmentally-friendly corrosion inhibitors of aluminium alloys: a review, Corros. Sci. 40 (1998) 1803-1819.
[ 5 ] Directive 2004/107/EC of the European Parliament and of the Council of 15 December 2004 relating to arsenic, cadmium, mercury, nickel and polycyclic aromatic hydrocarbons in ambient air.  Off. Jour. Eur. Commun. L 23, 26.1.2005, p. 3–16, 
[ 6 ] EU Directive 2002/95/EC, Restriction of Hazardous Substances in Electrical and Electronic Equipment, (RoHS directive 2002), www.broadcom.com/docs/ & www.chem.agilent.com/
[ 7 ] Y. N. Mikhailoskii, G. A. Berdzenishvili, Activating and passivating properties of oxygen containing anions in the corrosion processes of aluminium. Prot. Met. 22 (1986) 669-703.
[ 8 ] M. S. Vukasovich, F. J. Sullivan, Evaluation of Molybdate as an Inhibitor in Automotive Engine Coolants, Mater. Perform. 29 (1990) 25-33.
[ 9 ] A. Kh. Bairamov, S. Ch. Verdiev Oxidising type inhibitors for protection of aluminium and steel surfaces in sodium chloride solutions, Brit. Corros. Jour. 27 (1992) 128–134.
[ 10 ] C. M. Mustafa, S. M. Islam Dulal, Molybdate and Nitrite as Corrosion Inhibitors for Copper-Coupled Steel in Simulated Cooling Water, Corrosion 52 (1996) 16–22.
[ 11 ] B. R. W. Hinton, D. R. Arnott, N. E. Ryan, The inhibition of aluminium corrosion by cerium cations, Metals Forum 7 (1984) 211-217.
[ 12 ] B. R. W. Hinton, D. R. Arnott, N. E. Ryan, Cerium conversion coating for the corrosion protection of aluminium, Metals Forum 9 (1986) 162-173.
[ 13 ] B. R. W. Hinton, Review on corrosion inhibitor science and technology, in A. R. P. L. ed. Corrosion/89 symposium, NACE, pp. I-11, (1993) p. 1.
[ 14 ] L. Wilson, B. R. W. Hinton, Australian patent P10649 March 1987.
[ 15 ] M. Dabalà, L. Armelao, A. Buchbergea, I. Calliari, Cerium-based conversion layers on aluminum alloys, Appl. Surf. Sci. 172 (2001) 312–322.
[ 16 ] P. Campestrini, H. Terryn, A. Hovestad, J. H. W. de Wit, Formation of a cerium-based conversion coating on AA2024: relationship with the microstructure, Surf. Coat. Technol. 176 (2004) 365–381.
[ 17 ] B. Y. Johnson, J. Edington, M. J. O’Keefe, Effect of coating parameters on the microstructure of cerium oxide conversion coatings, Mater. Sci. Eng. A361 (2003) 225–231.
[ 18 ] B. F. Rivera, B. Y. Johnson, M. J. O'Keefe, W. G. Fahrenholtz, Deposition and characterization of cerium oxide conversion coatings on aluminum alloy 7075-T6, Surf. Coat. Technol. 176 (2004) 349–356.
[ 19 ] A. Decroly, J. P. Petitjean, Study of the deposition of cerium oxide by conversion on to aluminium alloys, Surf. Coat. Technol. 194 (2005) 1–9.
[ 20 ] D. K. Heller, W. G. Fahrenholtz, M. J. O’Keefe, The effect of post-treatment time and temperature on cerium-based conversion coatings on Al 2024-T3, Corros. Sci. 52 (2010) 360-368.
[ 21 ] J. Creus, F. Brezault, C. Rebere, M. Gadouleau, Synthesis and characterisation of thin cerium oxide coatings elaborated by cathodic electrolytic deposition on steel substrate, Surf. Coat. Technol. 200 (2006) 4636-4645.
[ 22 ] Y. Hamaoui, F. Pedraza, C. Remazeiles, S. Cohendoz, C. Perebe, L. Tifouti, J. Creus, Cathodic electrodeposition of cerium-based oxides on carbon steel from concentrated cerium nitrate solutions. Part. I. Electrochemical and analytical characterization, Mater. Chem. Phys. 113 (2009) 650-657.
[ 23 ] S. Berna, F. J. Botana, J. J. Calvino, M. Marcos, J. A. Perez-Omil, H. Vidal, Lantanide salts as alternative coirrosion inhibitors, J. Alloys Comp. 225 (1995) 638-641.
[ 24 ] M. Balasubramanian, C. A. Melendres, A. N. Mansour, X-ray absorption study of the local structure of cerium in electrochemically deposited thin films, Thin Solid Films 347 (1999) 178–183.
[ 25 ] L. Arurault, P. Monsang, J. Salley, R. S. Bes, Electrochemical preparation of adherent ceria coatings on ferritic stainless steel, Thin Solid Films, 446 (2004) 75-80.
[ 26 ] P. Stefanov, G. Atanasova, D. Stoychev, Ts. Marinova, Electrochemical deposition of CeO2 on ZrO2 and Al2O3 thin films formed on stainless steel, Surf. Coat. Technol. 180/181 (2004) 446–449.
[ 27 ] C. M. Rangel, T. I. Paiva, P. P. da Luz, Conversion coating growth on 2024-T3 Al alloy The effect of pre-treatments, Surf. Coat. Technol. 202 (2008) 3369–3402.
[ 28 ] S. Seal, S. K. Bose, S. K. Roy, Improvement in the oxidation behavior of austenitic stainless steels by superficially applied cerium oxide coatings, Oxidation of Metals, 41 (1994) 139-178.
[ 29 ] C. Wang, F. Jiang, F. Wang, The characterization and corrosion resistance of cerium chemical conversion coatings for 304 stainless steel, Corros. Sci. 46 (2004) 75-89.
[ 30 ] K. Aramaki, Treatment of zinc surface with cerium(III) nitrate to prevent zinc corrosion in aerated 0.5 M NaCl, Corros. Sci. 43 (2001) 2201–2215.
[ 31 ] M. G. S. Ferreira, R. G. Duarte, M. F. Montemor, A. M. Simoes, Silanes and rare earth salts as chromate replacers for pre-treatments on galvanised steel, Electrochim. Acta, 49 (2004) 2927–2935.
[ 32 ] A. Amedeh, B. Pehlevani, S. Heshmati-Manesh, Effects of rare earth metal addition on surface morphology and corrosion resistance of hot-dipped zinc coatings, Corros. Sci. 44 (2004) 2321-2331.
[ 33 ] C. Motte, N. Maury, M-G. Olivier, J-P. Petitjean, J-F. Willem, Cerium treatments for temporary protection of electroplated steel, Surf. Coat. Technol. 200 (2005) 2366–2375.
[ 34 ] Y. Kobayashi, Y. Fujiwara, Effect of SO42− on the corrosion behavior of cerium-based conversion coatings on galvanized steel. Electrochim. Acta, 51 (2006) 4236–4242.
[ 35 ] M. Hosseini, H. Ashassi-Sorkhabi, H. A. Y. Ghisvand, Corrosion protection of electro-galvanized steel by green conversion coatings, Jour. Rare-Earths 25 (2007) 537–543.
[ 36 ] M. Dabala, K. Brunelly, E. Napolitani, M. Margini, Cerium-based chemical conversion coating on AZ63 magnesium alloy, Surf. Coat. Technol. 172 (2003) 227-232.
[ 37 ] B. Bouchaud, J. Balmain, G. Bonnet, F. Pedraza, Correlations between electrochemical mechanisms and growth of ceria-based coatings onto nickel substrates.Electrochim. Acta 88 (2013) 98–806.
[ 38 ] I. Zhitomirsky, A. Petric, Electrochemical deposition of ceria and doped ceria films, Ceram. Internat. 27 (2001) 149–155.
[ 39 ] J. Xu, S. S. Xin, P. H. Han, R. Y. Ma, M. C. Li, Cerium chemical conversion coatings for corrosion protection of stainless steels in hot seawater environments, Mater. Corros. 64, 7 (2013) 619–624
[ 40 ] C. Wang, F. Wang, The characterization and corrosion resistance of cerium chemical conversion coatings for 304 stainless steel, Corros. Sci. 46, 1, (2004) 75-89
[ 41 ] M. R. Majdi, I. Danaee, S. S. Afghahi, Preparation and Anti-Corrosive Properties of Cerium Oxide Conversion Coatings on Steel X52, Mater. Res. 20, 2 (2017) 445-451
[ 42 ] J. Creus, F. Brezault, C. Rebere, M. Gadouleau, Synthesis and characterisation of thin cerium oxide coatings elaborated by cathodic electrolytic deposition on steel substrate, Surf. Coat. Technol. 200 (2006) 4636–4645
[ 43 ] B.Ramezanzadeh, H.Vakili.R.Amini, Improved performance of cerium conversion coatings on steel with zinc phosphate post-treatment, J. Ind. Eng. Chem. 30 (2015) 225 - 233
[ 44 ] H. Hasannejad, T. Shahrabi, M. Jafarian, Synthesis and properties of high corrosion resistant Ni–cerium oxide nano-composite coating, Mater. Corros. 64, 12 (2013) 1104–1113
[ 45 ] X. Jiang, R. Guo, S. Jiang, Evaluation of self-healing ability of Ce–V conversion coating on AZ31 magnesium alloy. J. Magnes. Alloys, 4, (2016) 230–241
[ 46 ] A. J. Davenport, H. S. Isaacs, M. W. Kendig, X-Ray Absorption Study of Cerium in the Passive Film on Aluminum, J. Electrochem. Soc. 136 (1989) 1837-1838.
[ 47 ] J. O. Stoffer, T. J. O’Keefe, E. Morris, S. A. Hayes, P. Yu, A. Williams, X. Lin, US Patent No 2004 /0026260 A1
[ 48 ] W. G. Fahrenholz, M. J. O’Keefe, H. Zhou, J. T. Grant, Characterization of cerium-based conversion coatings for corrosion protection of aluminum alloys, Surf. Coat. Technol. 155 (2002) 208-213.
[ 49 ] Y. Xingwen, C. Chunan, Y. Zhiming, Z. Derui, Y. Zhongda, Study of double layer rare earth metal conversion coating on aluminum alloy LY12, Corros. Sci. 43 (2001) 1283-1294.
[ 50 ] S. Kozhukharov, J. A. P. Ayuso, D. S. Rodríguez, O. F. Acuña, M. Machkova, V. Kozhukharov Optimization of the basic parameters of cathodic deposition of Ce-conversion coatings on D16 AM clad alloy, J. Chem. Technol. Metall. 48 (2013) 296-307.
[ 51 ] K. Brunelli, F. Bisaglia, J. Kovac, M. Magrini, M. Dabala, Effects of cathodic electrodeposition parameters of cerium oxide film on the corrosion resistance of the 2024 Al alloy, Mater. Corros. 7 (2009) 514–520.
[ 52 ] L. J. Zivkovic, J. P. Popic, B. V. Jegdic, Z. Dohcevic-Mitrovic, J. B. Bajat, V. B. Miskovic-Stankovic, Corrosion study of ceria coatings on AA6060 aluminium alloy obtained by cathodic electrodeposition: Effect of deposition potential, Surf. Coat. Technol. 240 (2014) 327–335.
[ 53 ] Y. Zhou, J. A. Switzer, Growth of cerium (IV) oxide films by the electrochemical generation of base method, J. Alloys Comp. 237 (1996) 1-5.
[ 54 ] I. Zhitomirsky, A. Petric, Electrolytic and electrophoretic deposition of CeO2 films, Mater. Lett. 40 (1999) 263– 268.
[ 55 ] J-M. Brossard, J. Baumain, J. Creus, G. Bonnet, Characterization of thin solid films containing yttrium formed by electrogeneration base for high temperature corrosion applications, Surf. Coat. Technol. 185 (2004) 275-282.
[ 56 ] A. E. Hughes, R. J. Taylor, B. R. W. Hinton, L. Wilson, XPS and SEM Characterization of Hydrated Cerium Oxide Conversion Coatings, Surf. Interface. Anal. 23 (1995) 540–550.
[ 57 ] A. J. Aldykiewicz, A. J. Davenport, H. S. Isaacs, Studies of the Formation of Cerium-Rich Protective Films Using X-Ray Absorption Near-Edge Spectroscopy and Rotating Disk Electrode Methods, J. Electrochem. Soc. 143 (1996) 147-154.
[ 58 ] P. Yu, S. A. Hayes, T. J. O’Keefe, M. J. O’Keefe, J. O. Stoffer, The phase stability of cerium species in aqueous systems II. The Ce(III)/Ce(IV) – H2O – H2O2/O2 systems. Considerations and Porbaix diagram calculations, J. Electrochem. Soc. 153(1) (2006) C74-C79.
[ 59 ] A. M. Sukhotyna, Manual of Electrochemistry, Gov. Ed. “Chemistry” (1981) St. Petersburg. p. 140.
[ 60 ] F. H. Scholes, C. Soste, A. E. Hughes, S. G. Hardin, P. R. Curtis, The role of hydrogen peroxide in the deposition of cerium-based conversion coatings, Appl. Surf. Sci. 253 (2006) 1770–1780.
[ 61 ] Arnott D R, Ryan N E, Hinton B R W, Sexton B A, Hughes A E (1985) Auger and XPS studies of cerium corrosion inhibition on 7075 aluminum alloy. Appl Surf Sci 22/23:236-251. DOI: 10.1016/0378-5963(85)90056-X
[ 62 ] F-B. Li, G. E. Thompson, In Situ Atomic Force Microscopy Studies of the Deposition of Cerium Oxide Films on Regularly Corrugated Surfaces, J. Electrochem. Soc. 146 (1999) 1809–1815.
[ 63 ] A. J. Bard, L. R. Faulkner, Electrochemical Methods. Fundamentals and Applications, 2nd Ed. Wiley, New York. (2001), p. 143. ISBN 0-471-04372-9
[ 64 ] E. A. Matter, S. Kozhukharov, M. Machkova, V. Kozhukharov, Comparison between the inhibition efficiencies of Ce(III) and Ce(IV) ammonium nitrates against corrosion of AA2024 aluminum alloy in solutions of low chloride concentration, Corros. Sci. 62 (2012) 22–33.
[ 65 ] K. Aramaki, The inhibition effects of cation inhibitors on corrosion of zinc in aerated 0.5 M NaCl, Corros. Sci. 43 (2001) 1573-1588.
[ 66 ] M. Hoang, A. E. Hughes, T. W. Turney, An XPS study of Ru-promotion for Co/CeO2, Fischer-Tropsch catalyst, Appl. Surf. Sci. 72 (1993) 55–65.

Submit A Manuscript
Review Manuscripts
Join As An Editorial Member
Most Views
Article
by Sergey M. Afonin
2923 Downloads 26339 Views
Article
by Syed Adil Hussain, Taha Hasan Associate Professor
2283 Downloads 16976 Views
Article
by Omprakash Sikhwal, Yashwant Vyas
2355 Downloads 14531 Views
Article
by Munmun Nath, Bijan Nath, Santanu Roy
2249 Downloads 14383 Views
Upcoming Conferences