CaP Precipitation on Titanium under UV Lighting and Effect of Urea Concentration

Volume 7, Issue 2, April 2022     |     PP. 32-45      |     PDF (1767 K)    |     Pub. Date: June 24, 2022
DOI: 10.54647/materials43184    92 Downloads     102825 Views  


Qing Zhou, College of Mechanical and Electrical Engineering, Nanjing University of Aeronautics and Astronautics, Nanjing, China
Liang-Liang Zhang, College of Mechanical and Electrical Engineering, Nanjing University of Aeronautics and Astronautics, Nanjing, China
Ming-Li Xie, College of Mechanical and Electrical Engineering, Nanjing University of Aeronautics and Astronautics, Nanjing, China

This paper reports the precipitation of calcium phosphate (CaP) on alkaline hydrothermally treated titanium alloy under ultraviolet (UV) lighting. Urea (NH2CONH2) with different concentrations were added into a simulated body fluid buffered by sodium lactate. CO2 and NH3 gas release during immersion tests were detected. The pH values were also examined during the tests. The results show that the detected NH3 and CO2 concentrations near the solution are larger than those in the air. The release of NH3 and CO2 due to the hydrolysis of urea was confirmed both under UV lighting and under dark. It is shown by SEM photographs that the precipitated CaP particles are surrounded by organic which is supposed to be lactate deposition after 14 days immersion. A structure of embedded CaP particles in organic deposition matrix is considered as a primary stage of the formation of CaP-CO-NaCl layer. UV lighting causes the contents of Na and Cl increased, but C and O decreased.

CaP biomineralization, photocatalysis, NH3 release, CO2 release, urea, titanium alloy

Cite this paper
Qing Zhou, Liang-Liang Zhang, Ming-Li Xie, CaP Precipitation on Titanium under UV Lighting and Effect of Urea Concentration , SCIREA Journal of Materials. Volume 7, Issue 2, April 2022 | PP. 32-45. 10.54647/materials43184


[ 1 ] Shah, F.A.; Trobos, M.; Thomsen, P.; Palmquist, A. Commercially pure titanium (cp-Ti) versus titanium alloy (Ti6Al4V) materials as bone anchored implants - Is one truly better than the other? Materials Science Engineering C, 2016, 62, 960-966, doi:10.1016/j.msec.2016.01.032.
[ 2 ] Hayakawa, S.; Okamoto, K.; Yoshioka, T. Accelerated induction of in vitro apatite formation by parallel alignment of hydrothermally oxidized titanium substrates separated by sub-millimeter gaps. Journal of Asian Ceramic Society, 2019, 7, 90-100, doi:10.1080/21870764.2019.1572690.
[ 3 ] Posternak, M.; Baldereschi, A.; Delley, B. Adsorption of HPOx and CaHPOx (x=1,…4) molecules on anatase TiO2 (001) surfaces. Surface Science, 2019, 679, 93-98, doi:10.1016/j.susc.2018.09.002.
[ 4 ] Wu, M.; Wang, T.; Zhang, J.; Qian, H.; Miao, R.; Yang, X. PDA/CPP bilayer prepared via two-step immersion for accelerating the formation of a crack-free biomimetic hydroxyapatite coating on titanium substrates. Materials Letter, 2017, 206, 56-59, doi:10.1016/j.matlet.2017.06.052.
[ 5 ] Kapoor, R.; Sistla, P.G.; Kumar, J.M.; Raj, T.A.; Srinivas, G.; Chakraborty, J.; Sinha, M.K.; Basu, D.; Pande, G. Comparative assessment of structural and biological properties of biomimetically coated hydroxyapatite on alumina (α-Al2O3) and titanium (Ti-6Al-4V) alloy substrates. Journal of Biomedical Materials Research - Part A, 2010, 94A, 913-926, doi:10.1002/jbm.a.32767
[ 6 ] Zhao, S.F.; Jiang Q.H.; Peel, S.; Wang, X.X.; He, F.M. Effects of magnesium-substituted nanohydroxyapatite coating on implant osseointegration. Clinical Oral Implants Research, 2013, 24, 34-41, doi:10.1111/j.1600-0501.2011.02362.x.
[ 7 ] Combes, C.; Cazalbou, S.; Rey, C. Apatite biominerals. Minerals, 2016, 6, 1-25, doi:10.3390/min6020034.
[ 8 ] HavitcGlu, H.; Cecen, B.; Pasinli, A.; Yuksel, M.; Aydin, I.; Yildiz, H. In vivo investigation of calcium phosphate coatings on Ti6-Al-4V alloy substrates using lactic acid - sodium lactate buffered synthetic body fluid. Acta Orthopaedica et Traumatologica Turcica, 2013, 47, 417-422, doi: 10.3944/AOTT.2013.2885.
[ 9 ] Zhang, L.J.; Liu, H.G.; Feng, X.S.; Zhang, R.J.; Zhang, L.; Mu, Y.D.; Hao, J.C.; Qian, D.J.; Lou, Y.F. Mineralization Mechanism of Calcium Phosphates under Three Kinds of Langmuir Monolayers. Langmuir, 2004, 20, 2243-2249, doi:10.1021/la035381j.
[ 10 ] Catauro, M.; Papale, F.; Sapio, L.; Naviglio, S. Biological influence of Ca/P ratio on calcium phosphate coatings by sol-gel processing. Material Science and Engineering C, 2016, 65, 188-193, doi:10.1016/j.msec.2016.03.110.
[ 11 ] Chen, M.F.; Zhang, J.; You, C. Ultraviolet-accelerated formation of bone-like apatite on oxidized Ti-24Nb-4Zr-7.9Sn alloy. Front Materials Science, 2013, 7, 362-369, doi: 10.1007/s11706-013-0208-6.
[ 12 ] Kawashita, M.; Matsui, N.; Miyazaki, T.; Kanetaka, H. Effect of ammonia or nitric acid treatment on surface structure, in vitro apatite formation, and visible-light photocatalytic activity of bioactive titanium metal. Colloids Surfaces B Biointerfaces, 2013, 111, 503-508, doi:10.1016/j.colsurfb.2013.06.049.
[ 13 ] Han, Y.; Xu, K. Photoexcited formation of bone apatite-like coating on micro-arc oxidized titanium. Journal of Biomedical Materials Research, 2004, 71, 608-614, doi:10.1002/jbm.a.30177.
[ 14 ] Hanaor, D.A.H.; Sorrell, C.C. Review of the anatase to rutile phase transformation. Journal of Materials Science, 2011, 46, 855-874, doi:10.1007/s10853-010-5113-0.
[ 15 ] Schneider, J.; Matsuoka, M.; Takeuchi, M.; Zhang, J.L.; Horiuchi, Y.; Anpo, M.; Bahnemann, D.W. Understanding TiO2photocatalysis: Mechanisms and materials. Chemical Reviews, 2014, 114, 9919-9986, doi:10.1021/cr5001892.
[ 16 ] Pulpytel, J.; Fakhouri, H.; Smith, W.; Arefi-Khonsari, F.; Meshkini, F. Control of the visible and uv light water splitting and photocatalysis of nitrogen doped tio2 thin films deposited by reactive magnetron sputtering. Applied Catalysis B: Environmental, 2014, 144, 12-21.
[ 17 ] Dal Sasso, G.; Asscher, Y.; Angelini, I.; Nodari, L.; Artioli, G. A universal curve of apatite crystallinity for the assessment of bone integrity and preservation. Scientific Reports, 2018, 8, 1-13, doi:10.1038/s41598-018-30642-z.
[ 18 ] Jokic, B.; Tanaskovic, D.; Jankovic-Castvan, I.; Drmanic, S.; Petrovic, R.; Janackovic, D. Synthesis of nanosized calcium hydroxyapatite particles by the catalytic decomposition of urea with urease, Journal of Materials Research, 2007, 22, 1156-1161, doi:10.1557/jmr.2007.0170.
[ 19 ] Bayraktar, D.; Tas, A.C. Formation of hydroxyapatite precursors at 37C in urea- and enzyme urease-containing body fluids. Journal of Materials Science Letters, 2001, 20, 401-403, doi:10.1023/A:1010929825557.
[ 20 ] Bayraktar, D.; Cu, A.; Tas, È. Chemical Preparation of Carbonated Calcium Hydroxyapatite Powders at 37 C in Urea-containing Synthetic Body Fluids. Journal of European Ceramic Society, 1999, 19, 2573-2579.
[ 21 ] Peng, X.; Chen, A.; Large-scale synthesis and characterization of TiO2-based nanostructures on Ti Substrates. Advanced Functional Materials, 2006, 16, 1355-1362, doi:10.1002/adfm.200500464.
[ 22 ] Pasinli, A.; Yuksel, M.; Celik, E.; Sener, S.; Tas, A.C. A new approach in biomimetic synthesis of calcium phosphate coatings using lactic acid-Na lactate buffered body fluid solution. Acta Biomaterialia, 2010, 6, 2282-2288, doi:10.1016/j.actbio.2009.12.013.
[ 23 ] Su, C.Y.; Zhou, Q.; Zou, C.H. Surface deposition on titania in a physiological solution with ultraviolet irradiation in situ and effect of heat treatment. Coatings, 2019, 9, 80, doi:10.3390/coatings9020080.
[ 24 ] Muller, L.; Muller, F.A. Preparation of SBF with different HCO3- content and its influence on the composition of biomimetic apatites. Acta Biomaterialia, 2006, 2, 181-189, doi: 10.1016/j.actbio.2005.11.001.